Alle tijd van de wereld

We hebben het zo druk dat we vergeten dat de universele standaardtijd een menselijk construct is. Met eenvoudige middelen kunnen we de afwijking tussen onze klok en de ware zonnetijd zichtbaar maken.

Als je een jaar lang elke dag om 12 uur de positie van de zon vastlegt, ontstaat uiteindelijk een achtfiguur. Dat patroon heet het analemma van de zon.. In de zomer komt de zon hoger boven de horizon dan in de winter: dat correspondeert met de hoogteverschillen in het analemma. Maar van waar komt de afwijking naar het oosten en het westen? Die is het gevolg van de zogeheten tijdsvereffening, die het verschil tussen de zonnetijd en de kloktijd aanduidt. Die ingreep voerden onze voorouders in toen ze merkten dat niet elke zonnedag even lang was.

De eerste analemma’s maakte men door de schaduw van een stok op een vast tijdstip te noteren. Later deden wetenschappers dat met meervoudig belichte foto’s. Tegenwoordig kan je digitale foto’s in elkaar voegen (zie foto hieronder voor een simulatie). Die hedendaagse analemma’s worden gretig gedeeld op sociale media (bijvoorbeeld hier).

Gesimuleerde fotomontage van een analemma in Duitsland. https://commons.wikimedia.org/wiki/File:Analemma_pattern_in_the_sky.jpg

De universele standaardtijd waarop we onze gsm’s, keukenklokjes en uiteindelijk onze levens gelijkzetten, is alomtegenwoordig. We hebben het er zo druk mee dat we gemakkelijk vergeten dat we die tijd zelf hebben geconstrueerd. Daardoor kan de variatie in de ware zonnetijd, die je met eenvoudige hulpmiddelen kan vaststellen, ons opnieuw verbazen.

Een zonnedag duurt gemiddeld 24 uur. Dat is de tijd die we in ons halfrond meten tussen de eerste keer dat de zon schijnbaar pal in het zuiden staat en de eerstvolgende keer dat we ze op die positie aantreffen. Anders gezegd: een zonnedag is de tijdspanne tussen twee momenten waarop een zonnewijzer 12 uur aangeeft.

Een zonnewijzer kan doorheen het jaar meer dan een kwartier voor- of achterlopen op de klok.

In de loop van een jaar kan de duur van een zonnedag tot wel 20 seconden variëren. De dagelijkse variaties cumuleren tot meer dan een kwartier verschil tussen klok en zonnewijzer. Om die afwijkingen vast te stellen, hebben we een externe standaard nodig. De Babyloniërs slaagden daarin door de ware zonnetijd te vergelijken met de sterrentijd, die ze nauwkeuriger konden aflezen dan hun waterklokken. Pas veel later werden de aardse middelen preciezer.

Met die standaarden kan je de variaties in de zonnetijd corrigeren en zo een minder veranderlijke tijdseenheid overhouden. Die tijdsvereffening leidt tot een middelbare tijd waarbij elke dag per definitie exact 24 uur duurt.

Intussen ontdekten wetenschappers ook wat het verschil veroorzaakt tussen de zonnetijd en die middelbare tijd. De eerste oorzaak is dat de baan van de aarde rond de zon niet perfect cirkelvormig is. (Washington Post publiceerde een verhelderende animatie die de elliptische aardbaan aan posities in het analemma relateert.) De tweede is dat de aardas niet loodrecht staat op het vlak waarin de aarde om de zon draait.

Naast waterklokken gebruikten mensen van oudsher kaarsen en zandlopers om tijdsintervallen te bepalen. Aan het einde van de 13de eeuw verscheen het eerste mechanische uurwerk, dat werkte via vallende gewichten. In de 16de eeuw maakte men een binnenwerk dat je kon opwinden met een veer. En in 1657 verkreeg Christiaan Huygens een patent op het slingeruurwerk. Isaac Newton roemde het als het eerste middel op aarde om de tijd op een voldoende uniforme manier af te tikken.

Aanvankelijk waren mechanische klokken prestigeobjecten, voorbehouden voor torens en chique salons, maar gaandeweg werden ze kleiner en betaalbaarder en zo verschenen ze in elk huishouden. Met een zakhorloge of polsuurwerk kon iemand veel meer afspraken op één dag plannen. Ten slotte volgde het eerste elektronische uurwerk: het kwartshorloge.

Al onze klokken worden nu, direct of indirect, gesynchroniseerd via een netwerk van atoomklokken. De huidige atoomklokken gebruiken de microgolfstraling van cesium-133-atomen, die een welbepaald aantal keren per seconde trillen. Sinds 1967 is de definitie van de seconde hier ook op gebaseerd. In het Observatorium van Parijs en enkele andere laboratoria onderzoeken wetenschappers ondertussen al weer andere atomen waarvan de straling dichter bij het zichtbare gebied ligt. Naar verwachting staan die optische klokken binnen enkele jaren voldoende op punt om er de universele standaardtijd en een aangescherpte definitie van de seconde op te baseren.

Onze tijdsmeting heeft al een hele weg afgelegd. Het begon met de schijnbare positie van de zon, de maan en de sterren:  relatief trage, maar regelmatige processen op grote schaal. Geleidelijk lukte het om de tijd af te meten met louter aardse middelen. Sinds vorige eeuw zoeken we die steeds grotere precisie in de kleine en snelle binnenwereld van atomen en in de verre toekomst misschien zelfs in de atoomkern. Of we daardoor ook meer tijd krijgen valt te betwijfelen.

PS: Analemma's bepalen aan de hand van schaduwen is nog steeds een leuk experiment, bijvoorbeeld voor leerkrachten fysica: zie deze Engelstalige tekst van Robert E. Parkin. En wie op zoek is naar extra informatie met formules om de vorm van het analemma voor eender welke positie en tijdstip te bepalen verwijs ik naar deze Engelstalige tekst van Helmer Aslaksen en Shin Yeow Teo.